

Design and Implementation of Rete Node Indexing for Stream

Data Processing Rules
Muhammad Habibur Rahman O Dongjun Lim O Bonghee Hong O Woochan Kim

Department of Electrical and Computer Engineering, Pusan National University

Agency for Defense Development South Korea

Mhabiburr17@pusan.ac.kr, dannylim0709@gmail.com, bhhong@pusan.ac.kr,

woochankim@add.re.kr

Summary

 Latest military vessel is equipped with multiple radar and sonars. When aerial, water and underwater

target objects collected in real-time from naval vessels are collected as real-time stream data,

continuous execution of space-time rules for risk analysis and weapon response is required. Existing

RETE that mostly handle scalar value is extended to support complex event processing rules. Due to

urgency to reduce time consumption, we propose multidimensional node indexing and spatial node

indexing that extends the node-link structure of the RETE algorithm to support continuous query.

1. INTRODUCTION

When aerial, water and underwater objects position

and movement are collected in real-time from naval

vessels as real-time stream data, continuous execution

of space-time rules for risk analysis and weapon

response is required. It is necessary to process the rule

using the spatial and temporal query condition for threat

analysis on continuously collected target objects. When

target objects that are continuously changing in time

and space are inputted as the stream data, the

performance improvement problem for finding and

executing corresponding rules as quickly as possible

must be solved.
Latest military vessel is equipped with advanced radar

and sonar technology together. By using these

technologies, the enemy movement is captured

continuously as a primitive event every second. Each

sonar and radar have different coverage areas. If we

visualize them, it will be figured as figure 1.

Figure 1: Vessel is equipped with sonar sensor (red)

and radar (black dotted)

In this paper, we present the rule-based approach to

execute continuous risk analysis. Domain expert need

simplest way to express their logic due to lack of

technical ability. Continuously changing object’s

position in space and time make frequent rule

modification is unavoidable. The rule might be

redundant, affect the next rules, or cascaded. By

employing a rule-based approach, domain experts will

express their knowledge easier than program the whole

code on their own. Also, it will handle rule management

to avoid memory leaking.
This research is concerned with risk analysis over

moving objects using a rule-based approach. Therefore,

enhancement of the rule-based engine to reason the

spatiotemporal data is required. The RETE [1] algorithm

is a powerful algorithm as a rule-based

engine. Originally, RETE is designed to handle scalar

value. However, previous works [2, 3, 5] already prove

that it is possible to extend the RETE algorithm

functionalities to handle spatiotemporal condition.
Spatial and temporal query condition is required for

the rule condition must be expressed as a

spatiotemporal-parameterized continuous query in

which the temporal and spatial range may be vary

depending on the time and space. Spatiotemporal

condition rules are expressed as follows: IF

<Continuous Query Condition> sliding window <time

interval> then <event product>.

After all rules are set and compiled, we Index the

nodes into multidimensional query indexing. Instead of

building index of object’s event that keep changing, it

is better to keep the queries that more stable. In runtime,

each incoming event will be tested with the available

rule nodes. This method is called query stabbing.

2. MULTIDIMENSIONAL NODE INDEXING

Our goal is, “given continuously primitive event, what

kind of response that we should execute?”. Hence, we

propose four event processing steps. Those are, event

filtering, event capturing, continuous query, and

complex event processing. To reduce execution time,

we propose multidimensional node indexing. Our

proposed method is a combination of previous work of

RETE algorithm, complex event processing [4], sliding

window, and R*-Tree.

2.2 SPATIOTEMPORAL CONDITION FOR RETE

Previous study [5] implements a spatiotemporal rule-

engine that based on RETE algorithm to monitor

patient’s health remotely. They prove that it is possible

to extend the spatial and temporal reasoning over RETE

algorithm. But their research is conducted over Drools

Engine which does not provide processing continuous

data stream.

In this paper exploits the benefit of RETE algorithm for

processing scalar data, which include node sharing of

similar conditions to reduce the number of nodes and

repetitive re-computation. However, the rete should be

extended to support the spatiotemporal conditions of

target objects.

To support spatiotemporal rule condition, we enhance

corresponding spatiotemporal node with spatial

indexing method which is R*-Tree and sliding windows.

By enhancing these two techniques, the node is able to

execute spatial query by concentrating on the “given

interval”. For example, we want to detect if there is an

object that is located within a 10 km radius, between

certain degree angle with the vessel for 10 seconds, it

will be considered a threat. We visualize the stream

condition as figure 2.

Figure 2: Ally and Enemy position at t0-t10

Consider we have the following rule,

Rule 1:

IF speed > 3 & elevation < 10 & iff = false

THEN EnemyVessel

Rule 2:

IF Distance (EnemyVessel) < 50 & dir_range(250, 290)

WINDOW range = 10s

THEN CommonThreat, count.objid

Rule 3:

IF Distance (EnemyVessel) < 25 & dir_range(250, 290)

WINDOW range = 10s

THEN MediumThreat, count.objid

Rule 4:

IF approaching (MediumThreat) &

MediumThreat.count > 2

WINDOW range = 60s

Then NavalDefenceResponse

From the example above, RETE will compile rule

networks. Figure 3 shows the visualization of the

network.

Figure 3: Compiled RETE

Those 4 steps of complex event processing are

already covered using RETE algorithm. The first step is

event filtering. It is responsible to make sure that there

are no duplicate events. Once the events are filtered, it

is pushed to working memory. Event capturing is

responsible to tracking and refining the simple events

from Event Filtering. In this step, each event will be

assigned with new meanings. Next is Continuous Query.

This step is responsible to doing query continuously. In

the end, is Complex Event Processing. It is responsible

to query the buffered event that is kept inside the sliding

window.

2.3 NODE INDEXING DESIGN AND

IMPLEMENTATION

The problem with continuous streaming data is the

data is always coming. Previous research [6] they treat

the query as data, and their data as query. It means,

they keep the query in the database instead of the

actual data. It is because query that is more constant

size and number than the infinite number of continuous

streaming data. Next, when each data is treated as

query that will be tested with each of the indexed query.

We call this method as query stabbing.

There are two node indexing that we implement here.

The multidimensional node will be responsible to index

all alpha nodes that placed before the spatial query.

Due to different coverage of radar and sonar area, there

is a possibility of an enemy object that is located over

and overlapping coverage area. Therefore, we

implement spatial node indexing to reduce multiple

evaluation on multiple spatial nodes. Once the nodes

are indexed, then it executes node stabbing. Figure 4

shows the performance comparison.

Figure 4: Time complexity of node indexing

 There are several steps to insert alpha node into

multidimensional indexing, and spatial node into spatial

node indexing. Generally, those are decomposing the

rule, fetch their range, and put it into the R*-Tree. An

example of node Insertion is shown in figure 5 and

figure 6 shows the example of spatial node insertion.

Figure 5: Steps to build the node indexing

Figure 6: Steps to build the spatial node

indexing

After the nodes are well indexed, we will take

advantage of that built index. Simply we convert the

index into multi-dimensional point. Next, we will fetch

all overlapping rules on that multidimension R*-Tree. At

the end, we execute each overlapping rule node so the

proceeding rule node will be processed as well. Next,

the spatial rule is executed. We also use the indexed

spatial node to examine the incoming event. After the

final Beta Node is executed, RETE will inform the

output to the end-user.

Figure 7: Execution steps

3. EXPERIMENT

In this paper, we are using artificially generated data

with several scenario due to data secrecy. The scenario

represents if there are several objects coming and

retreating with different starting, ending, and

trajectories position. figure 8 visualize the scenario. The

implementation is done in Windows 10 OS, using 16 GB

of RAM, Intel i5 3.2 GHz x64 based processor, and

using C++ language. In this experiment, we are going

to test the time consumption of different number of

object and different number of data length.

Figure 8: Experiment Scenario

Figure 9: Experiment result with 10.000 events

Table 1: Experiment time result with multiple

events and rules

number

of rules

1.000 data 5.000 data

no

indexing
indexing

no

indexing
indexing

13 4.105 1.874 24.948 13.687

21 5.992 2.960 37.260 20.394

28 5.989 3.143 37.563 20.750

35 10.308 4.538 65.550 25.457

Figure 9 shows the performance comparison using

different number of objects and 10.000 number of data.

It is proven that if the node is indexed, it can reduce the

time consumption. Table 1 shows the detail of

performance experiment.

4. SUMMARY

When aerial, water and underwater objects position

and movement are collected in real-time from naval

vessels as real-time stream data, continuous execution

of space-time rules for risk analysis and weapon

response is required. Our goal is, “given continuously

primitive event, what kind of response that we should

execute?”. Hence, we propose four event processing

steps. Those are, event filtering, event capturing,

continuous query, and complex event processing. To

reduce time consumption, we implement

multidimensional node indexing and spatial node

indexing.

We are planning to compare the performance this

method with another existing method in the future. We

also planning to evaluate our method with various

tactical object movement scenario.

Acknowledgments

This work was supported by the Agency of

Defense Development (UD190003DD).

REFERENCES
[1] Forgy, Charles L. "Rete: A fast algorithm for the many

pattern/many object pattern match problem." Readings in

Artificial Intelligence and Databases. Morgan Kaufmann, 1989.

547-559.

[2] Ray, Cyril, et al. "Spatio-temporal rule-based analysis of

maritime traffic." 2013.

[3] Merilinna, Janne. "A mechanism to enable spatial

reasoning in jboss drools." 2014 International Conference on

Industrial Automation, Information and Communications

Technology. IEEE, 2014.

[4]. Yihuai Liang, Jiwan Lee, Bonghee Hong, WooChan Kim.

“Rule-based Complex Event Processing on Tactical Moving

Objects,” IEEE 4th International Conference on Computer and

Communications, 2018.

[5] Pathak, Ravi, and V. Vaidehi. "Complex event processing

based remote health monitoring system." 2014 3rd

International Conference on Eco-friendly Computing and

Communication Systems. IEEE, 2014.

[6] D Kalashnikov, S Prabhakar, S Hambrusch. “Efficient

Evaluation of Continuous Range Queries on Moving Objects,”

International Conference on Database and Expert Systems

Applications, 2002.

